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Abstract. Geostatistical models are typically based on symmetric straight-line distance, which fails

to represent the spatial configuration, connectivity, directionality, and relative position of sites in

a stream network. Freshwater ecologists have explored spatial patterns in stream networks using

hydrologic distance measures and new geostatistical methodologies have recently been developed

that enable directional hydrologic distance measures to be considered. The purpose of this study was

to quantify patterns of spatial correlation in stream water chemistry using three distance measures:

straight-line distance, symmetric hydrologic distance, and weighted asymmetric hydrologic distance.

We used a dataset collected in Maryland, USA to develop both general linear models and geostatistical

models (based on the three distance measures) for acid neutralizing capacity, conductivity, pH, nitrate,

sulfate, temperature, dissolved oxygen, and dissolved organic carbon. The spatial AICC methodology

allowed us to fit the autocorrelation and covariate parameters simultaneously and to select the model

with the most support in the data. We used the universal kriging algorithm to generate geostatistical

model predictions. We found that spatial correlation exists in stream chemistry data at a relatively

coarse scale and that geostatistical models consistently improved the accuracy of model predictions.

More than one distance measure performed well for most chemical response variables, but straight-

line distance appears to be the most suitable distance measure for regional geostatistical modeling.

It may be necessary to develop new survey designs that more fully capture spatial correlation at a

variety of scales to improve the use of weighted asymmetric hydrologic distance measures in regional

geostatistical models.

Keywords: geostatistics, hydrologic distance, scale, spatial autocorrelation, stream networks, water

chemistry, weighted asymmetric hydrologic distance

1. Introduction

Stream water chemistry is spatially and temporally heterogeneous at multiple scales
(Pringle, 1991; Chambers et al., 1992; Dawson et al., 2001) and the conditions
observed at survey sites result from the collective influence of multi-scale landscape
filters (Frissell et al., 1986; Poff, 1997). A hierarchical constraint exists among
filters (Frissell et al., 1986; Davies et al., 2000), but the strength of the linkage
varies between filter scales. Processes acting across spatial and temporal filter scales
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produce spatial patterns in water chemistry (Poff, 1997). The quantification of these
patterns provides information concerning the importance of ecosystem processes
and spatial relationships occurring across multiple scales.

Geostatistical models are commonly used to quantify spatial patterns in the ter-
restrial environment, but have been applied less frequently to aquatic systems such
as lakes (Altunkaynak et al., 2003), estuaries (Little et al., 1997; Rathbun, 1998), and
streams (Kellum, 2003; Yuan, 2004). Geostatistical models are typically based on
symmetric straight-line distance, which may not be an ecologically representative
distance measure because it fails to represent the spatial configuration, connectivity,
directionality, and relative position of sites in a stream network (Olden et al., 2001;
Benda et al., 2004; Ganio et al., 2005). Recently, freshwater ecologists have begun
to explore spatial patterns in stream networks using hydrologic distance measures
(Dent and Grimm, 1999; Gardner et al., 2003; Legleiter et al., 2003; Torgersen
et al., 2004; Ganio et al., 2005). In addition, new geostatistical methodologies have
recently been developed that enable directional hydrologic distance measures to
be considered (Ver Hoef et al., 2007). This provides freshwater ecologists with a
variety of distance measures to choose from, but it is not obvious which measure
is most appropriate for water chemistry data.

Our ability to detect patterns of spatial correlation depends on the grain of
the survey design, the extent of the study area, and the configuration of survey
locations (Levin, 1992; Cooper et al., 1997). It is likely that the distance measure
will also affect the spatial patterns that we observe. Different patterns are likely to
occur within and between filter scales (Poff, 1997) and freshwater ecologists must
choose the survey scale, design, and distance measure that is most appropriate for
their research questions. Little information is available concerning the effect of the
distance measure on observed patterns of spatial correlation in stream networks
(but see Gardner et al., 2003). Therefore, the purpose of this study is to explore and
quantify patterns of spatial correlation in chemical response variables using three
distance measures: straight-line distance (SLD), symmetric hydrologic distance
(SHD), and weighted asymmetric hydrologic distance (WAHD).

1.1. BACKGROUND

Symmetric and asymmetric distances can be used to represent physical and ecolog-
ical processes in stream ecosystems. These distances are in turn used to characterize
the spatial neighborhood for each site. A spatial neighborhood includes sites that
are nearby and have a quantifiable influence upon one another, i.e., are correlated
with one another. Sites outside of the spatial neighborhood are considered spatially
uncorrelated. Symmetric distance is directionless (isotropic) and has equal corre-
lation in all directions (or both on a stream). SLD is symmetric and all locations in
a study area can be considered neighbors (Figure 1a). Hydrologic distance can be
either symmetric or asymmetric and is simply the distance between two locations
when movement is restricted to the stream network. SHD is the total upstream
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Figure 1. Symmetric and asymmetric distance classes. The stream network is represented by a solid

line, while distance measurements are represented with dotted lines. Symmetric hydrologic distance

measures include straight-line distance (a) and symmetric hydrologic distance (b). Sites 1, 2, and 3

are all neighbors to one another when these distance measures are used. Asymmetric distance classes

include upstream and downstream asymmetric hydrologic distance (c). Sites 1 and 2 are neighbors to

site 3, but not to each other.

and downstream hydrologic distance between two sites (Figure 1b). Thus, all sites
located within a stream network are neighboring sites (assuming all basins in the
study area share a common outlet) because flow direction is disregarded. Asym-
metric distances include unidirectional measures that are restricted to either the
upstream or downstream flow direction. Water must flow from one location to an-
other to be considered neighbors (Figure 1c). Spatial weights can also be generated
using metrics that represent relative network position, such as watershed area, and
used to create more ecologically representative WAHD measures (Ver Hoef et al.,
2007).

Terrestrial processes may be better represented with SLD because the terrestrial
landscape is represented as a two-dimensional surface where any two sites may be
connected. For example, simplistic models representing terrestrial transport mecha-
nisms, such as seed dispersal, provide few restrictions to the direction of movement.
At times, it may also be appropriate to apply SLD to stream ecosystems. For exam-
ple, a chemical response variable may be significantly influenced by a continuous
landscape variable, such as geology type (Kellum, 2003) or by broad-scale factors,
such as acid precipitation (Driscoll et al., 2001). However, SLD may not be as useful
when instream processes dominate water chemistry conditions. Although freshwa-
ter systems have four dimensions (Ward, 1989), we focus here on the longitudinal
or upstream-downstream dimension and represent streams as one-dimensional fea-
tures. Freshwater riverine systems differ from terrestrial ecosystems because they
are linear and typically the movement of material is restricted to the stream net-
work. Some aquatic fauna (e.g. fish) move both up and downstream, but cannot
move across the terrestrial landscape (Colyer et al., 2005). Water chemistry is



574 E. E. PETERSON ET AL.

strongly influenced by longitudinal transport mechanisms. Movement is restricted
to the network and occurs primarily in the downstream direction (Closs et al., 2004).

The relative position in the network also affects the condition of a site (Pringle,
2001; Benda et al., 2004) and reflects the influence that it will have on other
sites (Cumming, 2002). For example, a site located on a small tributary may have
little influence on a downstream site located on the mainstem due to substantial
differences in discharge volume (Benda et al., 2004). Clearly, both topographical
and topological characteristics of the stream network provide a vast amount of
information about chemical conditions at unobserved sites. Therefore, functional
distances based on hydrologic connectivity should be considered for geostatistical
modeling in stream networks.

Patterns of spatial correlation are visualized using a graphical representation
called an empirical semivariogram, which is a plot of the semivariance between sites
given their separation distance. The semivariance represents the strength of spatial
correlation between two sites (Olea, 1991) and the separation distance is simply
the distance traveled from one location to a second location. Semivariograms are
generated by dividing the separation distances into groups, or bins, calculating the
mean semivariance for each bin (1), and plotting the semivariances for the bins in
ascending order (i.e. 100, 200, 300 . . . .). The semivariance is given by

γ (h) = 1

2N (h)

N (h)∑
i=1

[Zi − Zi+h]2 , (1)

where h is the mean separation distance between sites within a bin, γ (h) is the
semivariance for the bin, Zi is the observed sample value at site i, Zi+h is the
observed sample value at i + h, and N (h) is the total number of sample pairs for
the bin.

The semivariogram is a powerful diagnostic tool for identifying whether there
is correlation among sites. It is common to fit an autocorrelation function, such
as the exponential function, to the semivariogram in order to estimate the three
autocorrelation parameters (θ ): the nugget, sill, and range (see Gardner et al., 2003;
Kellum, 2003; Yuan, 2004). The nugget represents the variation between sites as
their separation distance approaches zero. It can result from experimental error or
could indicate that a substantial amount of variation occurs at a scale finer than
the survey scale. The sill is delineated where the autocorrelation asymptotes and
represents variance found among uncorrelated data. The range parameter describes
how fast the autocorrelation decays with distance.

Fitting an autocorrelation function to the empirical semivariogram using a least
squares method provides robust estimates of the autocorrelation parameters regard-
less of the error distribution (Carroll and Ruppert, 1982). However, a drawback to
this method is that the investigator must select bin size in order to generate a useful
semivariogram. The fitted values of the autocorrelation parameters are, therefore,
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dependent on the bin size selected. Thus, parameter estimates can vary from inves-
tigator to investigator as a function of bin size.

Likelihood-based approaches can also be used to obtain estimates of the autocor-
relation parameters (Kitanidis, 1983) and are slightly more robust when the errors
are normally distributed (Jobson and Fuller, 1980). However, they are sensitive
to misspecification of the distribution and may provide poor parameter estimates
when the assumption of normality is violated (Carroll and Ruppert, 1982). The
log likelihood function is used to estimate unknown parameter values based on
the data and is derived from a specific probability distribution function, such as
the exponential autocorrelation function (Hoeting et al., 2006). The data values
and the probability distribution function are fixed while the parameter values are
allowed to vary. Maximizing the (log) likelihood with respect to the unknown
parameters provides maximum likelihood (ML) estimates. ML estimation is an
efficient method of parameter estimation for large sample sizes and provides a
means for estimating uncertainty in the estimates (Pardo-Ig̀uzquiza, 1998). In ad-
dition, competing models can be readily compared using, for example, the Cor-
rected Akaike’s Information Criterion (AICC), which is itself likelihood based
(Akaike, 1973).

Few studies have explored patterns of spatial correlation in stream chemistry data
(but see Dent and Grimm, 1999; Gardner et al., 2003; Kellum, 2003; Yuan, 2004),
yet findings suggest that the range varies with respect to the distance measure,
spatial correlation differs between chemical response variables, and that patterns of
spatial correlation change over time (Table I). Gardner and others (2003) compared
spatial correlation in temperature using three distance measures: SLD, SHD, and
SHD weighted by Strahler stream order. They found that hydrologic distance
measures led to semivariograms with a larger range than SLD and that weighting
hydrologic distance further increased the range (Table I). This was surprising
since theoretically SLD would explain patterns of spatial correlation produced by
broad-scale ecological processes that are not constrained to one watershed, such
as the weathering of geological parent material. We presumed that hydrologic
distance measures would better represent finer-grain processes related to flow con-
nectivity. Dent and Grimm (1999) investigated the effect of flood events on spatial
correlation in three chemical response variables using SHD and found that their
range was affected by flood frequency. The range increased immediately following
a flood event and then decreased over time, which created heterogeneous patterns
of chemical concentration. The observed temporal pattern of correlation was
similar for all response variables, but the range of their spatial correlation differed
(Table I).

We found only one study where a WAHD measure was used to explore spatial
patterns of correlation in water chemistry. Cressie and others (2005) developed
an asymmetric hydrologic distance measure weighted by stream order, which was
based on the work of Ver Hoef and others (2007). They considered a mixture of
autocorrelation functions based on SLD and WAHD and determined that spatial
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TABLE I

A summary of studies that have explored patterns of spatial autocorrelation in stream chemistry data

using straight-line distance (SLD) and symmetric hydrologic distance (SHD)

Geographic Distance Range Autocorrelation

Response variable location measurea Nugget Sill (km) function

Yuan, 2004

Nitrate (NO3) Maryland, SLD N/A N/A 49 Exponential

Sulfate (SO4) USA SLD N/A N/A 68 Exponential

Kellum, 2003

Acid nuetralizing capacity Mid-Atlantic Anisotrophic 0.104 0.21 160.93 Exponential

Highlands, SLD

USA

Gardner et al., 2003

Temperature Catskill SLD 2.0 3.5 6 Spherical

Temperature Mountains, SHD 2.0 3.5 7.5 Spherical

Temperature New York, SHD weighted 0 5.2 10 Spherical

USA by stream order

Dent and Grimm, 1999

Nitrate-nitrogen

2 week post flood Central SHD N/A N/A >3 Spherical

2 month post flood Arizona, SHD 4.70 31.5 0.401 Spherical

9 month post flood USA SHD 195.00 2265 0.359 Spherical

Soluble Reactive Phosphorus

2 week post flood SHD N/A N/A >3 Spherical

2 month post flood SHD N/A N/A >3 Spherical

9 month post flood SHD 9.50 120 1.068 Spherical

Conductivity

2 week post flood SHD N/A N/A >3 Spherical

2 month post flood SHD N/A N/A >3 Spherical

9 month post flood SHD 1.00 973 1.025 Spherical

Cressie et al., 2005

Dissolved Oxygen Southeast SLD & WAHD 0.88 1.043 6.07 Spherical

Queensland,

Australia

a Unless otherwise noted, covariance parameters for straight-line distance are isotropic.

dependence between instream dissolved oxygen measurements was better repre-
sented by SLD.

More than one distance measure can be used to explain variability in stream
chemistry data (Gardner et al., 2003), which is useful because we expect
spatial correlation to differ between temporal and spatial filter scales (Levin,
1992; Poff, 1997). The distance measure and scale must be appropriate for the
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ecological process being studied. However, applying geostatistical techniques
to stream networks is a relatively new field of research and the limited find-
ings to date do not clearly indicate which distance measure to use. To our
knowledge, Cressie and others (2005) is the only study to quantitatively fit a
variety of distance measures to one dataset to determine which best explains
the variability in stream chemistry data. Gardner and others (2003) also com-
pared predictions made using three distance measures, but used the spherical
autocorrelation function to generate correlations based on hydrologic distances.
The spherical autocorrelation function is invalid for pure hydrologic distance
measures because the correlation matrices may contain negative eigenvalues, may
produce negative variance estimates, and are not guaranteed to be positive definite
(Ver Hoef et al., 2007).

Our goal is to provide a detailed investigation into patterns of spatial correlation
in eight chemical response variables collected throughout the state of Maryland,
USA. We derive lumped watershed covariates, such as mean elevation or percent
geology type in the watershed, using a geographical information system (GIS) and
use them to explain the broad-scale trend in the mean of the stream chemistry
data. The geostatistical models are based on SLD, SHD, and WAHD. We generate
predictions and make a statistical comparison to determine which distance measure
best explains the variability in each chemical response variable.

2. Methodology

2.1. DATA

The Maryland Biological Stream Survey (MBSS) data (Figure 2) were collected
throughout Maryland by the Department of Natural Resources (DNR) (Mercurio
et al., 1999). Maryland is a geographically diverse state that can be divided into three
general provinces: the Coastal Plain, the Piedmont, and the Appalachian Plateau
(Boward et al., 1999). The Coastal Plain borders Chesapeake Bay and produces
low gradient streams with sandy gravel substrates. Elevation increases from east to
west and Piedmont streams are characterized by steeper slopes and rock or bedrock
substrates. The Appalachian Plateau is the westernmost region and is a diverse
composition of valleys, sloping mountains, and steep ridges. Streams generally
have rocky substrates, but range from low gradient meandering streams to steep
cascading streams.

The Maryland DNR used a probability-based survey to collect chemical, phys-
ical, and biological data from first, second, and third order non-tidal streams in
17 interbasins throughout the state (Mercurio et al., 1999). A stratified random
sample was collected from each interbasin based on Strahler stream order. The
number of samples collected per stream order was proportional to the number of
stream order miles within the interbasin. Ten chemical variables were collected:
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Figure 2. The Maryland Biological Stream Survey (MBSS) dataset includes chemical, physical, and

biological data, which were collected throughout Maryland by the Maryland Department of Natural

Resources during 1995, 1996, and 1997.

acid neutralizing capacity (ANC), in-situ conductivity, conductivity measured in
the lab (CONDLAB), dissolved organic carbon (DOC), dissolved oxygen (DO),
nitrate-nitrogen (NO3), in-situ pH, pH measured in the lab (PHLAB), sulfate (SO4),
and temperature (TEMP). However, we did not include in-situ pH and conductivity
in our analysis. In total, 955 sites were visited during 1995, 1996, and 1997.

The stream network and survey site coordinates were pre-processed in a GIS
to ensure that sites were positioned on the correct stream segment. There are a
variety of reasons why it is rare for GIS data collected within a stream to fall
directly on a line segment representing a stream. Though the spatial accuracy of
points collected using a global positioning system are becoming more precise, they
still have some error (Bolstad et al., 2005). Some stretches of river can move (e.g.
meander) slightly from their mapped position (Dunne and Leopold, 1978). Streams
are often represented by lines (USGS, 1999) and so samples collected on the banks
of a large river may not fall directly on a line segment. Digital streams datasets may
contain mapping errors and generalizations, such as the absence of small tributaries
and the generalization of form, which are found when streams are represented at
coarser scales (Veregin, 2000). As a result of these data problems, we discarded 74
sites because the survey stream could not be identified. In addition, there were a
minimal number of missing data values for each chemical response variable. These
sites were not completely eliminated from further analysis since more than one
variable was collected at each site. Instead, they were temporarily removed from
the analysis when a response variable contained no data.
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Distance matrices were generated for SLD, SHD, and WAHD measures. We
projected the data from latitude/longitude to Albers Equal Area projection (North
American Datum 1983 based on the GRS1980 spheroid) before calculating the
distance measurements. Projecting these data were necessary because distance be-
tween points calculated directly from latitude/longitude coordinates have a known,
systematic bias associated with increasing latitude. The SLD matrix was calculated
in R statistical software package (Ihaka and Gentleman, 1996) using the easting
and northing values as x, y coordinates. The SHD, asymmetric hydrologic distance,
and spatial weights matrices were calculated in a GIS using programs written in
Visual Basic for Applications for ArcGIS version 8.3 (ESRI, 2002).

The spatial weights were used to develop the WAHD measure and represent
the relative influence of one site on another. The weights were based on watershed
area, which we use as a rough proxy for discharge volume. The spatial weights were
generated by calculating the upstream watershed area for the downstream node of
each segment in the stream network using a GIS. We defined a stream segment as
the portion of a stream located between two confluences. When survey sites fell
midway along a segment it was split into two separate stream segments. At each
confluence or survey site in the network, the total upstream watershed area was
calculated by summing the watershed area for the incoming stream segments. The
proportional influence for each incoming segment was calculated by dividing its
watershed area by the total upstream watershed area at the confluence or survey site.
Every stream segment in the network contained its proportional influence on the
segment directly downstream when this process was complete. Then, we located
the path between flow connected sites and calculated the influence of one site on
another, which was equal to the product of the segment proportional influences
found in the path. The spatial weights matrix was simply an n by n matrix that
contained the square root of the influence for all pairs of sites, which we used to
maintain stationarity of the variances (Ver Hoef et al., 2007). If two sites were not
connected by flow the spatial weight was equal to zero and a sites influence on
itself was equal to one. The GIS methods used to generate the hydrologic distance
matrices and spatial weights matrix were lengthy, but are not the focal point of this
manuscript (but see Peterson, 2005).

2.2. STATISTICAL ANALYSIS

2.2.1. Initial Covariate Selection
The MBSS dataset contains lumped watershed attributes for each survey site
(Mercurio et al., 1999), which we used as potential covariates (Table II). In ad-
dition, we included the survey year, Level III Omernik’s ecoregion (Omernik,
1987), mean elevation in the watershed, and geographic location. The variance
inflation factor (VIF) collinearity statistic (Helsel and Hirsch, 1992) indicated that
five potential covariates were significantly correlated with other covariates (VIF
> 10) so we removed them from further analysis. We also created a validation set
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TABLE II

Potential covariates

Covariate Description

AREA Watershed area (ha)

BARREN % Barren

WATER % Water

HIGHURB % High intensity uban

LOWURB % Low intensity urban

PASTUR % Hay/pasture/grass

PROBCROP % Probable row crop

ROWCROP % Row crop

CONIFER % Conifer or evergreen forest type

DECIDFOR % Deciduous forest type

MIXEDFOR % Mixed forest type

EMERGWET % Emergent Wetlands

WOODYWET % Woody wetlands

COALMINE % Coalmine

EASTING Easting - Albers Equal Area Conic

NORTHING Northing - Albers Equal Area Conic

ELEV Mean elevation in the watershed

YR96 Sample Year 1996

YR97 Sample Year 1997

ER67 Omernik’s Level 3 Ecoregion 67

ER69 Omernik’s Level 3 Ecoregion 69

ARGPERC % Argillaceous rock type

CARPERC % Carbonic rock type

FELPERC % Felsic rock type

MAFPERC % Mafic rock type

SILPERC % Siliceous rock type

for each chemical response variable, which contained a unique set of 100 randomly
selected sites (without replacement). These data were set aside in order to assess
the accuracy of the final models.

We reduced the number of covariates due to the considerable processing time
required for geostatistical model selection. For example, it was necessary to invert
the matrices (881×881), fit the three covariance parameters, and fit the five regres-
sion coefficients at each model iteration. We acknowledge that setting a limit on
the number of covariates may have resulted in the omission of additional covariates
that possess significant predictive ability. However, our goal was to explain enough
variability in the data to recognize and compare patterns of spatial autocorrelation
in the chemical response variables. We do not believe that the possible omission of
additional covariates would significantly affect the results of this study.
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TABLE III

Summary statistics for chemical response variables

Response Transformation N Min 1st Qu. Median Mean 3rd Qu. Max

ANC (μeq/l) log 10(x + 320) 874 2.36 2.73 2.85 2.88 3.00 3.75

CONDLAB log 10(x + 1) 874 1.45 2.06 2.20 2.20 2.34 3.52

(μmho/cm)

DOC (mg/l) log 10(x + 1) 877 0.00 0.40 0.49 0.56 0.70 1.53

DO (mg/l) none 826 1.10 7.50 8.40 8.22 9.30 12.60

NO3 (mg/l) log 10(x + 1) 873 0.00 0.22 0.42 0.44 0.64 1.07

PHLAB none 866 4.40 6.79 7.16 7.12 7.45 8.90

SO4 (mg/l) none 870 0.32 0.93 1.10 1.10 1.24 2.72

TEMP (◦C) none 842 11.40 17.20 19.10 19.36 21.50 28.90

Covariate

LOWURB none NA 0.00 0.10 0.97 6.70 5.05 76.74

HIGHURB none NA 0.00 0.00 0.12 1.12 0.63 22.90

WOODYWET none NA 0.00 0.00 0.80 2.91 3.13 34.96

PROBCROP none NA 0.00 10.34 19.15 20.27 29.05 85.47

ROWCROP none NA 0.00 2.51 6.72 9.46 13.36 50.44

PASTUR none NA 0.00 4.00 11.90 15.00 23.17 62.07

DECIDFOR none NA 1.74 16.52 26.05 32.66 45.06 98.43

CONIFER none NA 0.00 0.81 1.98 3.92 4.60 37.85

MIXEDFOR none NA 0.00 2.33 4.97 6.31 8.56 29.45

COALMINE none NA 0.00 0.00 0.00 0.18 0.00 12.91

WATER none NA 0.00 0.05 0.17 0.28 0.34 4.64

AREA (ha) none NA 11.63 385.46 1264.64 2602.13 3407.05 29068.57

∗YR96, YR97, ER67, ER69, and NORTHING were also significant covariates, but were not

included in the table since they are categorical data.

We used a Leaps and Bounds algorithm (Furnival and Wilson, 1974) to find the
“best” set of five covariates, based on Mallow’s Cp statistic (Neter et al., 1996), for
each chemical response variable and used them to develop a general linear model
(GLM). We checked the model residuals for signs of non-normality and trans-
formed ANC, CONDLAB, DOC, and NO3 using a log10(x + n) transformation
(Table III). The data contained a limited number of extreme values that could not be
explained by the models we proposed. If these data were included, they would have
a disproportionate influence on the fitted autocorrelation function, and the analysis
would be seriously compromised. Rather than use a formal robust estimation pro-
cedure (Rousseeuw and Leroy, 1987), we chose to proceed informally and simply
removed the most extreme values. We used a hypothesis-testing paradigm to detect
data values that produced a Studentized residual with a significance level less than
0.001.These data values were excluded from further analysis. We also calculated
summary statistics for the response variables and the significant covariates.
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2.2.2. Model Parameter Estimation
We restricted the model space to all possible linear models using the five explanatory
variables determined by the initial covariate selection process described above.
For a given distance measure there were 32 (25 = 32) competing models. Hence,
four sets of 32 models were developed for each chemical response variable. The
first set consisted of non-spatial models developed using GLM as a baseline to
determine whether geostatistical models provided additional predictive ability. Each
of the remaining sets assumed a geostatistical model using one of three distance
measures: SLD, SHD, or WAHD. We also assumed that the model residuals were
normally distributed with mean zero and variance-covariance matrix � = σ 2�,
where σ 2 is the variance and � = �(d; θ ) is the correlation matrix. Note that �

is a function of the distance between sites, d, given the autocorrelation parameter
vector, θ . Therefore, the model for response variable Z is written in matrix notation
as Z = Xβ + ε where ε ∼ N (0, σ 2�). Here X is the n × p design matrix of
covariates, β is a vector of coefficients of lengthp, and ε is a vector of n (correlated)
errors.

The log-likelihood function of the parameters (θ, β, σ 2) given the observed data,
Z , is

	(θ, β, σ 2; Z ) = −n

2
log(2π ) − 1

2
log |σ 2�|

− 1

2σ 2
(Z − Xβ)′�−1(Z − Xβ). (2)

Maximizing the log-likelihood (2) with respect to β and σ 2 yields β̂ =
(X ′�−1 X )−1 X ′�−1 Z and σ̂ 2 = (Z−X β̂)′�−1(Z−X β̂)

n . Both maximum likelihood
estimators (MLE) can be written as functions of θ alone. Thus, we derive the profile
log-likelihood function (Cressie, 1993) by substituting the MLEs back into (2)

	profile(θ ; β̂, σ̂ 2, Z ) = −n

2
log(2π) − n

2
log(σ̂ 2) − 1

2
log |�| − n

2
. (3)

The primary advantage to using the profile log-likelihood is that it reduces the
dimensionality of the problem, which can reduce the amount of time required to
find a numerical solution. This is especially important when there are a large number
of models to compare.

The correlation matrix, �, is computed using the exponential autocorrelation
function defined as

C1(d; θ1, θ2) =
{

1 if d = 0

(1 − θ1) exp(−d/θ2) if d > 0
′
,

(4)

where θ1 is the proportion of nugget effect and θ2 is the range parameter. The nugget
is estimated by θ̂1σ̂

2 where θ1 is restricted between zero and one. The approximate
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range over which sites are considered to be correlated is 3θ2 (Cressie, 1993). The
value d represents the distance between any two sites relative to the distance mea-
sure, e.g., SLD or SHD. The correlation matrix for the WAHD measure is generated
by taking the Hadamard (element-wise) product of (4) and the spatial weights matrix
(Ver Hoef et al., 2007). We restricted our analysis to the exponential autocorrelation
function because it is currently the single known valid autocorrelation function for
SHD (Ver Hoef et al., 2007). We assumed that the errors were independent for the
GLM model, i.e., � can be replaced with the identity matrix, In .

The MLE for θ is found by maximizing the profile log-likelihood (3) using a
quasi-Newton method (Byrd et al., 1995), which is in turn used to compute the
MLEs for the model parameters: β and σ 2. To promote numerical stability, we
standardized the response and explanatory variables to have mean zero and unit
variance and scaled the distances to fall between zero and one.

2.2.3. Model Selection and Model Performance
We used the spatial AICC statistic (Hoeting et al., 2006) to select the “best” GLM
and the three “best” geostatistical models for each response variable: one for each
of the three distance measures. The spatial AICC statistic is defined as

AICC = −2	profile (θ ; β, σ 2, Z ) + 2n
p + k + 1

n − p − k − 2
, (5)

where n is the number of observations, p − 1 is the number of covariates, and k is
the number of autocorrelation parameters. To select the “best” GLM model we set
k = 0. The parameter k was set to two for the remaining three distance measures.

The model with the smallest AICC from each set was used to generate predic-
tions using the universal kriging algorithm (Cressie, 1993). We used a split-sample
approach to calculate the mean square prediction error (MSPE) for each model
using validation sets that were set aside at the beginning of the analysis. The MSPE
is defined as

MSPE =
∑n p

i=1 (Zi − Ẑi )
2

n p
, (6)

where Zi is the observed value at site i, Ẑi is the predicted value at site i , and n p is
the total number of predictions. The MSPE was computed using a unique validation
set for each response variable, but the four models within a response variable were
tested using the same validation set. Models with small MSPE are desirable. The
MSPE provided a way to compare models constructed using different distance
measures and to determine which measure, if any, was more able to account for the
variability in the response variable. In addition, we calculated the squared Pearson
correlation coefficient (r2) between the predictions and observations.
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3. Results

Summary statistics for the chemical response variable and significant covariate
distributions are provided in Table III.

The spatial neighborhood produced by each distance measure differs, which
affects the number of neighboring sites, as well as, the median, mean, and maximum
separation distance between sites (Table IV). Asymmetric hydrologic distance had
considerably fewer pairs of neighboring sites compared to SLD and SHD. The
minimum separation distance between neighboring sites was similar for all distance
measures, but the asymmetric hydrologic distance measure had a shorter median,
mean, and maximum value than the other distance measures. SHD consistently had
the largest median, mean, and maximum separation distance.

We used five covariates in the model selection process (Table V) and our results
show that the models with the lowest spatial AICC value tended to be complex,
meaning that they included a large number of covariates (Table VI). Covariates

TABLE IV

Summary statistics for distance measures in kilometers for dissolved oxygen (n = 826)

Distance measure N Pairs Min Median Mean Max

Straight-line 340725 0.05 101.02 118.16 385.53

distance

Symmetric 62625 0.05 156.29 187.10 611.74

hydrologic distance

Pure asymmetrica 1117 0.05 4.49 5.83 27.44

hydrologic distance

aAsymmetric hydrologic distance was not weighted in the summary statistics.

TABLE V

Five significant covariates for each chemical response variable selected using a leaps and bounds

regression

Response Significant covariates

ANC (μeq/l) PASTUR, LOWURB, WOODYWET, YR96, YR97

CONDLAB HIGHURB, LOWURB, COALMINE, YR96, NORTHING

(μmho/cm)

DOC (mg/l) WOODYWET, CONIFER, MIXEDFOR, LOWURB, NORTHING

DO (mg/l) DECIDFOR, HIGHURB, WOODYWET, YR96, YR97

NO3 (mg/l) PASTUR, PROBCROP, ROWCROP, LOWURB, WATER

PHLAB PROBCROP, DECIDFOR, WOODYWET, AREA, CONIFER

SO4 (mg/l) LOWURB, COALMINE, NORTHING, ER67, ER69

TEMP ( ◦C) PROBCROP, LOWURB, WATER, YR96, YR97
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TABLE VI

Autocorrelation parameter estimates, mean square prediction error (MSPE), and squared Pearson cor-

relation coefficient (r 2) for the general linear model (GLM), straight-line distance (SLD), symmetric

hydrologic distance (SHD), and weighted asymmetric hydrologic distance (WAHD) model for each

unscaled response variable. The MSPE and r 2 values were calculated using the observed and predicted

values contained in the validation set

Response Distance

variable measure Model MSPE r 2 Nugget% Sill Range (km)

ANC GLM 32 293792.34 0.411 NA NA NA

SLD 32 50672.47 0.899 1.90 0.388 26.85

SHD 32 55861.61 0.877 2.00 0.286 57.57

WAHD 32 87203.41 0.843 0.90 0.644 47.76

CONDLAB GLM 32 34969.41 0.712 NA NA NA

SLD 32 11623.06 0.921 0.90 0.961 12.47

SHD 32 3239.63 0.959 1.30 0.573 27.67

WAHD 32 4014.98 0.948 1.10 0.569 45.27

DOC GLM 32 7.85 0.520 NA NA NA

SLD 32 5.46 0.644 1.54 0.282 56.39

SHD 32 5.37 0.656 2.89 0.693 180.79

WAHD 32 5.47 0.649 1.99 0.734 82.32

DO GLM 32 1.91 0.294 NA NA NA

SLD 31 1.58 0.414 5.45 0.202 62.77

SHD 31 1.64 0.392 7.04 0.283 301.76

WAHD 32 1.74 0.355 3.98 0.263 82.32

NO3 GLM 32 1.14 0.671 NA NA NA

SLD 32 0.82 0.772 3.60 0.593 20.78

SHD 32 0.75 0.783 7.40 0.957 45.13

WAHD 32 0.95 0.725 6.50 0.937 73.30

PHLAB GLM 32 0.16 0.504 NA NA NA

SLD 31 0.11 0.663 4.70 0.647 16.35

SHD 31 0.10 0.679 6.40 0.500 36.46

WAHD 32 0.11 0.663 3.50 0.503 33.99

SO4 GLM 32 363.78 0.190 NA NA NA

SLD 20 210.14 0.400 1.81 0.271 23.46

SHD 28 259.42 0.360 3.06 0.443 40.84

WAHD 28 292.21 0.286 1.76 0.922 82.32

TEMP GLM 32 8.81 0.177 NA NA NA

SLD 32 7.72 0.278 1.25 0.310 6.90

SHD 32 7.49 0.298 4.20 0.702 14.03

WAHD 32 7.37 0.309 1.88 0.473 15.49
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were systematically added during model selection so that model 1 represents the
null model (no covariates) and model 32 the full model (all five covariates). The
full model was selected for every GLM and for 17 of the 24 geostatistical models
(Table VI).

The models for DO, PHLAB, and SO4 displayed differences in complexity.
Model 31 was selected for the DO and PHLAB models based on SLD and SHD.
The DO model included all of the significant covariates except DECIDFOR, while
the PHLAB model excluded PROBCROP (Table V). This was not surprising be-
cause exploratory data analysis indicated that DO and PHLAB were weakly cor-
related with DECIDFOR and PROBCROP (r2 = 0.05 and r2 = 0.01, respec-
tively). However, EASTING explained 44% of the variability in PROBCROP and
63% of the variability in DECIDFOR. The simplification of the model suggests
that the correlations produced using SLD and SHD successfully represented the
relatively small amount of variability in the response that was also explained by
DECIDFOR and PROBCROP. In contrast, the full model was selected for the
WAHD. Although models 31 and 32 are similar, the difference in model com-
plexity indicates that the correlations based on WAHD contained less information
about spatial correlation in the response variable compared to those produced us-
ing the SLD and SHD measures. SO4 was the only chemical response variable
where a simpler model was consistently selected for all distance measures (Table
VI). NORTHING was omitted from the models based on SHD and WAHD and
ER67 was omitted from the SLD model (Table V). We believe that NORTHING
and ER67 also represent broad-scale trends on the landscape related to spatial
location.

The nugget estimates produced using ML differed between response variables.
ANC, CONDLAB, NO3, and PHLAB models had small nugget estimates, which
included less than 7.5% of the variability in the data (Table VI). The nugget estimates
for the DOC, SO4, and TEMP models were larger and represented between 12.5%
and 42% of the variability. Nugget estimates for DO were noticeably larger for
all three distance measures compared to other chemical response variables and
included between 39% and 70.4% of the variability in the data.

The ML estimates for the range parameter varied greatly with respect to distance
measure and response variable (Table VI). We found that SLD produced the shortest
range for every chemical response variable. The mean range for SLD, SHD, and
WAHD were 28.2 km, 88.03 km, and 57.8 km, respectively. TEMP consistently
produced the shortest range values and DO generated the largest range values for
every distance measure. It should be noted that the ML range parameter estimates
for the DOC, DO, and SO4 models based on WAHD fell at the (user-defined) upper
bounds of the optimization method.

The geostatistical models consistently explained more variability in the chemical
response variables than the GLM (Table VI). The most dramatic differences were
found in ANC, CONDLAB, and SO4 where the r2 value increased by 49, 24, and 21
percentage points, respectively. The geostatistical models for ANC, CONDLAB,
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DOC, NO3, and PHLAB models generated predictions that had a strong correlation
to the observed values (r2 = 0.63 to 0.95). However, the correlation between the
geostatistical model predictions generated by the DO, SO4, and TEMP models and
the observations was weaker (r2 = 0.28 to 0.41).

A comparison of the MSPE values suggests that more than one distance measure
performed well for most chemical response variables (Table VI). The MSPE values
for the DOC, TEMP, and PHLAB models did not exhibit clear differences relative to
distance measure. SLD and SHD models developed using NO3, ANC, and DO had
similar MSPE values and produced more accurate predictions than the equivalent
models using WAHD. In contrast, the SHD and WAHD models provided more
accurate CONDLAB predictions than the SLD model. SO4 was the only chemical
response variable that displayed obvious differences between the models using
different distance measures. The SLD model had the smallest MSPE value and
produced more accurate predictions compared to the other distance measures.

4. Discussion

The summary statistics for the distance measures (Table IV) demonstrate how a
distance measure can significantly influence the way that spatial relationships are
represented in a stream network. Not only does it affect the distance between
neighbors and their relative influence, but it also dictates the form and size of
the spatial neighborhood. For example, a different set of neighboring sites may
be included in the spatial neighborhood when SLD, SHD, and WAHD distance
measures are used. The geostatistical model estimates the local deviation from
the mean in the data at unobserved sites based on the proximity and value of
observed neighboring sites. When ecologically unrelated sites are included in the
spatial neighborhood the estimates are based on incorrect information, which may
negatively impact the accuracy of the geostatistical model predictions. Therefore,
decisions concerning which distance measure to use are not just statistical choices,
but should also be founded on the specific characteristics of the ecological process
of interest and the research questions.

It was difficult to locate and obtain a dataset that was suitable for a regional anal-
ysis of spatial correlation in stream networks. We examined over 35 Environmental
Protection Agency (EPA) datasets and most had large minimum separation distances
between sites or few neighboring sites when a WAHD measure was used (e.g. Col-
orado Regional Environmental Mapping and Assessment Program dataset (USEPA,
1993)). The EPA uses a probability-based random survey design based on stream or-
der to estimate regional stream conditions (Herlihy et al., 2000). This method is use-
ful because it provides a statistical inference about the entire population of streams,
within stream order, over a large area. However, it was designed to maximize spa-
tial independence of survey sites, and consequently does not adequately represent
spatial relationships in stream networks based on hydrologic distance measures.
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Figure 3. Summary of spatial relationships between neighboring sample sites for acid neutralizing

capacity using the weighted asymmetric hydrologic distance measure.

The MBSS data were also collected using a probability-based design (Mercu-
rio et al., 1999), but the sampling density was greater than other water chemistry
datasets. Despite our large sample size (n = 881), 244 sites did not have neigh-
bors (Figure 3). The validation sites were randomly selected and it is likely that a
considerable number did not have neighbors using the WAHD.

The models based on WAHD consistently produced more accurate predictions
than the GLM models (Table VI). However, when a spatial neighborhood was
deficient or absent for a specific site, the WAHD model performed in a manner
similar to the GLM (Figure 4). This is a common feature for geostatistical models.
The associated standard error for prediction sites with many observed neighbors is
small compared to sites that have few (or no) neighbors. Thus, the WAHD model
had the ability to explain the broad-scale mean in the data, but did not provide
additional predictive ability at that site. The WAHD model generally explained
more variability in the data as the number of neighboring sites increased (Figure
4). However, notable exceptions occurred when a site had neighbors with similar
watershed conditions, but significantly different water chemistry values. Although
the WAHD models were comparable to the SLD and SHD models, we believe that
their performance may have been hindered by the survey design used to collect the
raw data and the consequent lack of neighboring sites.

The GLM predictions also improved as the number of neighbors increased
(Figure 4) because clusters of sites in space tend to have similar covariate values,
i.e., they are positively correlated. Even though spatial location was not included
in the model, the statistical regression was pulled towards the cluster of similar
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number of neighbors.

values. Thus, the GLM contained hidden spatial information, which allowed the
non-spatial model to explain additional variability in the data when a greater number
of neighbors were present.

Our results provide evidence that patterns of spatial correlation exist in stream
water chemistry. The predictive ability of every geostatistical model was greater
than the GLM (Table VI) and in most cases more than one distance measure
could be used to quantify the additional variability in stream chemistry data. SLD
clearly does not represent the flow connectivity between sites in a stream network.
SHD is similar in this respect because sites need not be connected by flow to be
neighbors. The SHD separation distances and range values are consistently larger
than those produced using SLD (Table IV). This is intuitive since the distance
traveled between two sites increases when movement is restricted to the sinuous
network. If the models based on SLD had performed poorly, we could assume
that water chemistry was dominated by instream processes at a regional scale.
However, the SLD models were never substantially inferior, which leads us to be-
lieve that the SLD, SHD, and WAHD measures are representing patterns of spatial
correlation in continuous coarse-scale variables, such as geology type, that influ-
ence stream chemistry rather than the movement of chemicals through a stream
network.

The chemical response variables that produced models with the greatest amount
of predictive ability tend to be strongly related to coarse-scale landscape variables.
ANC, PHLAB, NO3, and CONDLAB are all significantly related to landscape
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variables that are not restricted to watershed boundaries, such as geology type
(Kellum, 2003), agricultural and urban areas (Herlihy et al., 1990; Gray, 2004),
and the atmospheric deposition of nitric and sulfuric acids (Angelier, 2003). The
small nuggets estimated by the geostatistical models indicate that the survey scale
was fine enough to capture the majority of variability in the data.

The range values differ between ANC, NO3, PHLAB, and CONDLAB and we
believe that they represent the coarse scale of heterogeneity in the ecological pro-
cesses that control them. However, the range parameter is estimated by modeling
the spatial structure in the residual error and so it does not provide information
about which ecosystem processes are producing patterns of spatial correlation. For
example, unexplained variability may be related to a strongly influential model
covariate that was not proposed during model selection. In contrast, the influential
ecological process may be related to a significant model covariate, but information
may have been lost by using coarse-scale lumped (non-spatial) watershed covari-
ates. Therefore, what follows is simply knowledgeable speculation about some, but
not all, potential sources of spatial correlation in the data.

ANC and NO3 models contained coarse-scale agricultural and urban covariates
and produced similar range values. Thus, runoff or leaching from agricultural and
urban areas may strongly influence ANC and NO3 concentrations in the stream. The
PHLAB model contained an agricultural covariate, but the range estimates were
slightly shorter. PHLAB was also correlated to forest and wetland watershed area,
which would be expected to exhibit more heterogeneous patterns on the landscape.
CONDLAB produced the shortest range values of the models with strong predictive
ability and was affected by urban land uses. However, percent coal mine area in the
watershed was another influential covariate, which could actually be considered a
point source of pollution. Coal mines are generally located in the western portion
of Maryland, but would not produce a continuous pattern on the landscape. For
example, the presence of one coal mine does not indicate that another coal mine
will be located in a neighboring watershed. The relatively unpredictable distribution
of coal mines may explain the short range values for CONDLAB. It is also not
surprising that the models using SHD and WAHD performed slightly better than
the SLD model (Table VI) since the effects of coal mines are found downstream
rather than in the adjacent watershed. Although the magnitude of the range values
differ for ANC, NO3, PHLAB and CONDLAB, they are all strongly influenced by
the coarse-scale condition on the landscape, which reduces the effect of in stream
processes at this survey scale.

The predictive ability of our models suggests that DOC is influenced by eco-
logical processes that produce coarse-scale patterns of spatial correlation on the
landscape. This is not surprising since the majority of stream DOC comes from
allochthonous sources of organic matter such as dead terrestrial plant material, soil,
groundwater inputs, and wetlands (Wetzel, 1992). In addition, DOC is transported
from the watershed to the stream via overland, sub-surface, or base flow and the
flow path of water affects the DOC concentration of stream water (Qualls and
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Haines, 1992; Mulholland, 2003). The ML range estimate for the WAHD model
was set to the upper limit in the optimization, but we feel that this is reasonable be-
cause the range values for SLD and SHD were also quite large. Interestingly, models
generated to predict DOC were the only models with considerable predictive ability
and relatively large nugget estimates. The large nugget estimate may result from our
failure to represent the terrestrial water flow in the model, point sources of organic
pollution, or fine scale instream processes that significantly affect stream DOC.

SO4 is also influenced by coarse-scale processes, such as atmospheric inputs of
sulfur and the weathering of sulfate minerals, and finer-scale processes related to
the mineralization of organic sulfur and the adsorption and desorption of sulfate
(e.g. Alewell et al., 1999). However, our results were inconclusive and were similar
to other studies that have failed to establish strong correlations between SO4 and
watershed landcover categories (Herlihy et al., 1998).

The SO4 model using SLD had the smallest MSPE, but still had little predictive
capability. All models produced large nugget values and the range value for SO4

based on WAHD was set at the maximum separation distance. These results could
indicate that finer-scale processes dominate patterns of spatial correlation in SO4

and that coarse-scale processes are inconsequential. However, the ecological litera-
ture does not support that conclusion since the effects of atmospheric deposition of
sulfuric acid on stream water chemistry have been well documented (Driscoll et al.,
2001). A more plausible explanation is that the model fails to represent a SO4 input
that does not produce a consistent spatial pattern on the landscape at the survey
scale. The unexplained variability in SO4 would significantly impair the predictive
ability of the model and would essentially make coarse and fine scale patterns of
spatial correlation indiscernible. The magnitude of the unexplained variability in
the data suggests that more work is required to identify a better model.

The geostatistical models produced for TEMP and DO also had relatively lit-
tle predictive ability. We concede that we are unable to conclusively determine
the source of the residual error in these models, but we speculate that TEMP and
DO are spatially and temporally variable over short distances (Hynes, 1960; Biggs
et al., 1990). They are somewhat influenced by coarse-scale factors, such as air
temperature or nutrient inputs (Smith, 1981), but are most likely dominated by
instream processes related to the biological oxygen demand or water depth. In ad-
dition, diurnal fluctuations in TEMP and DO resulting from changes in climate
and the biological oxygen demand in the water may have contributed to the vari-
ability in the data. TEMP consistently produced the smallest range values and the
nugget estimates were large, which provided further evidence that patterns of spatial
correlation were occurring at a fine scale. All three distance measures performed
equally well for TEMP, which again lead us to believe that the WAHD measure
represented coarse-scale patterns of spatial correlation across the landscape. Al-
though the geostatistical models for DO showed a slight improvement over the
GLM model in the accuracy of predictions, the model fit was extremely poor. The
nugget estimates for DO were consistently large, which indicated that there was
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little to no spatial correlation between sites. The range values were also unrealisti-
cally large (Table VI) given the ecological behavior of DO, which provided further
evidence that the form of the selected model was inappropriate. Given the large
nugget estimates and the poor predictive ability of the models, we believe that
the dominant processes controlling TEMP and DO occur at a scale finer than our
minimum separation distance.

It is difficult to compare the results of our study to those of other studies because
there are regional differences in the ecological processes that affect water chemistry
(Hill et al., 2000). However, Yuan (2004) also used the MBSS dataset and found
strikingly different range estimates for NO3 and SO4 based on SLD (Tables I and
VI). We suspect that the differences result from the methods that were used to fit
the autocorrelation functions. It appears that Yuan (2004) used a weighted least
squares method to fit the autocorrelation function to the mean semivariance at each
separation distance. Maximizing the likelihood function prevents inconsistencies
in the autocorrelation parameters related to (empirical) semivariogram bin size.
The methodology proposed by Hoeting and others (2006) allows for simultaneous
fitting of the model and the error process. In addition, it can be used to compare
different models using the spatial AICC.

5. Conclusions

The results of our study clearly demonstrate that spatial correlation exists in stream
chemistry data at a relatively coarse scale and that geostatistical models improve
the accuracy of predictions. The ranges and patterns of spatial correlation differ
between chemical response variables, which are influenced by ecological processes
acting at different spatial and temporal filter scales. We believe that the coarse-
scale patterns we identified reflect the effects of unknown regional scale ecological
processes that are better described using SLD. Yet, spatial patterns are likely to
change with the grain of the survey scale and the configuration of survey sites.
Therefore, we inevitably impose bias related to the minimum separation distance
and spatial neighborhood (Levin, 1992). For example, coarse-scale patterns may
not be easily discernable if the extent of our survey area were smaller. In addition,
a dataset with shorter separation distances and a more dense spatial arrangement
would likely reveal spatial patterns related to finer-scale processes. Our results
provide information about the ability of SLD, SHD, and WAHD measures to account
for additional variability in stream water chemistry at a regional scale. Further
research is needed to assess the capacity of these distance measures to explain
additional variability at finer scales, such as at the watershed or reach scale.

Agencies have invested substantial resources collecting datasets using
probability-based random survey designs and our study demonstrates that these data
can be used to predict water quality conditions throughout large areas. At present,
SLD appears to be the most suitable distance measure for regional geostatistical
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modeling of CONDLAB, ANC, NO3, SO4, PHLAB, DO, DOC, and TEMP in
Maryland when the data are collected using a probability-based random survey
design. SLD matrices are simple to calculate in statistical or GIS software, while
the pre-processing time for hydrologic distance measures is greater. To fully explore
the possible advantages of hydrologic distances, easy-to-use tools need to be widely
available. At present, a regional geostatistical model based on SLD could be used
by managers to predict water quality conditions for every stream segment within a
large area. This methodology could potentially help states and tribes identify water
quality impaired stream segments, which would allow agencies to focus additional
field sampling efforts on potentially impaired sites.

It is likely that water chemistry contains both coarse and fine scales of spatial
correlation and they may be better quantified using different distance measures. It is
possible to describe multiple spatial patterns using different distance measures and
to incorporate them into one geostatistical model (Cressie et al., 2005). However, it
is doubtful that datasets collected using a probability-based random survey design
will be suitable for these types of models. Multi-scale geostatistical models may
require new survey designs that more fully capture spatial correlation at a variety
of scales using multiple distance measures. Survey designs that explain variability
at multiple scales have been developed for terrestrial ecosystems (Shmida, 1984;
Stohlgren et al., 1995) and it should also be possible to develop them for stream
networks.
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